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1 Find the coefficient ofx3 in the expansion of(2− 1
2x)7. [3]

2 It is given that f(x) = 1

x3
− x3, for x > 0. Show that f is a decreasing function. [3]

3 Solve the equation 7 cosx + 5 = 2 sin2x, for 0◦ ≤ x ≤ 360◦. [4]
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In the diagram,D lies on the sideAB of triangleABC andCD is an arc of a circle with centreA and
radius 2 cm. The lineBC is of length 2

√
3 cm and is perpendicular toAC. Find the area of the shaded

regionBDC, giving your answer in terms ofπ and
√

3. [4]

5 The first term of a geometric progression is 51
3 and the fourth term is 214. Find

(i) the common ratio, [3]

(ii) the sum to infinity. [2]

6 The functions f and g are defined for−1
2π ≤ x ≤ 1

2π by

f(x) = 1
2x + 1

6π,

g(x) = cosx.

Solve the following equations for−1
2π ≤ x ≤ 1

2π.

(i) gf(x) = 1, giving your answer in terms ofπ. [2]

(ii) fg(x) = 1, giving your answers correct to 2 decimal places. [4]
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(i) The diagram shows part of the curvey = 11− x2 and part of the straight liney = 5− x meeting at
the pointA (p, q), wherep andq are positive constants. Find the values ofp andq. [3]

(ii) The function f is defined for the domainx ≥ 0 by

f(x) = {11− x2 for 0 ≤ x ≤ p,

5− x for x > p.

Express f−1(x) in a similar way. [5]

8 A curve is such that
dy
dx

= 2(3x + 4)
3
2 − 6x − 8.

(i) Find
d2y

dx2
. [2]

(ii) Verify that the curve has a stationary point whenx = −1 and determine its nature. [2]

(iii) It is now given that the stationary point on the curve has coordinates(−1, 5). Find the equation
of the curve. [5]

9 The position vectors of pointsA andB relative to an originO are given by

−−→
OA = ( p

1
1
) and

−−→
OB = ( 4

2
p
) ,

wherep is a constant.

(i) In the case whereOAB is a straight line, state the value ofp and find the unit vector in the

direction of
−−→
OA. [3]

(ii) In the case whereOA is perpendicular toAB, find the possible values ofp. [5]

(iii) In the case wherep = 3, the pointC is such thatOABC is a parallelogram. Find the position
vector ofC. [2]
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10 A straight line has equationy = −2x + k, wherek is a constant, and a curve has equationy = 2
x − 3

.

(i) Show that thex-coordinates of any points of intersection of the line and curve are given by the
equation 2x2 − (6+ k)x + (2+ 3k) = 0. [1]

(ii) Find the two values ofk for which the line is a tangent to the curve. [3]

The two tangents, given by the values ofk found in part(ii), touch the curve at pointsA andB.

(iii) Find the coordinates ofA andB and the equation of the lineAB. [6]

11
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The diagram shows the curve with equationy = x(x − 2)2. The minimum point on the curve has
coordinates(a, 0) and thex-coordinate of the maximum point isb, wherea andb are constants.

(i) State the value ofa. [1]

(ii) Find the value ofb. [4]

(iii) Find the area of the shaded region. [4]

(iv) The gradient,
dy
dx

, of the curve has a minimum valuem. Find the value ofm. [4]
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